lunes, 7 de noviembre de 2011

DERIVADAS

El conjunto de todas las funciones presenta una diversidad tal que es casi imposible descubrir propiedades generales interesantes que convengan a todas ellas. Puesto que las funciones continuas constituyen una clase restringida, cabría esperar que se hallaran algunos teoremas no triviales para ellas... Pero los resultados más interesantes y más penetrantes acerca de funciones sólo se obtendrán cuando limitemos aún más nuestra atención a funciones que tienen mayor derecho aún a recibir el nombre de 'razonables', con un comportamiento aún más regular que la mayor parte de las funciones continuas.

Incrementos

El incremento Dx de una variable x es el aumento o disminución que experimenta, desde un valor x = x0 a otro x = x1 de su campo de variación. Así, pues,
o bien
Si se da un incremento Dx a la variable x, (es decir, si x pasa de x = x0 a x = x0 + Dx), la función y = f (x) se verá incrementada en Dy = f (x0 + Dx) - f (x0) a partir del valor y = f (x0). El cociente
recibe el nombre de cociente medio de incrementos de la función en el intervalo comprendido entre x = x0 a x = x0 + Dx.

Pendiente

Si h ¹ 0, entonces los dos puntos distintos (a, f (a)) y (a+h, f (a+h)) determinan, como en la figura 6, una recta cuya pendiente es
Como indica la figura 7, la 'tangente' en (a, f (a)) parece ser el límite, en algún sentido, de estas 'secantes', cuando h se aproxima a 0. Hasta aquí no hemos hablado nunca del 'límite' de rectas, pero podemos hablar del límite de sus pendientes: La pendiente de la tangente (a, f (a)) debería ser.


Definición

[La función f es derivable en a si
  existe.
En este caso el límite se designa por f' (a) y recibe el nombre de derivada de f en a. (Decimos también que f es derivable si f es derivable en a para todo a del dominio de f.)
Definimos la tangente a la gráfica de f en (a, f (a)) como la recta que pasa por (a, f (a)) y tiene por pendiente f' (a). Esto quiere decir que la tangente en (a, f (a)) sólo está definida si f es derivable en a. (Spivak, 185)]
[Para una función dada f, la derivada f' se designa a menudo por
No hace falta decir que las distintas partes de esta expresión carecen de todo significado cuando se consideran separadamente; las d no son números, no pueden simplificarse, y la expresión completa no es el cociente de otros dos números 'df (x)' y 'dx'. Esta notación se debe a Leibniz (generalmente considerado como el codescubridor independiente del cálculo infinitesimal junto con Newton) y es llamada afectivamente notación de Leibniz.
Leibniz llegó a este símbolo a través de su noción intuitiva de la derivada, que él consideraba no como el límite de los cocientes (f (a+h)-f (a))/h, sino como el 'valor' de este cociente cuando h es un número 'infinitamente pequeño'. Esta cantidad 'infinitamente pequeña' fue designada por dx y la correspondiente diferencia 'infinitamente pequeña' f (x+dx)-f (x) por df (x). Aunque es imposible reconciliar este punto de vista con las propiedades de los números reales, algunos encuentran simpática esta noción de la derivada. (Spivak, 190-1)]
[La derivada de y = f (x) con respecto a x se puede representar por uno cualquiera de los símbolos
(Ayres, 23)]
{En otras palabras, la derivada de una función en un punto nos da la pendiente de la tangente de dicha función en ese punto}

 

LIMITES

En matemática, el límite es un concepto que describe la tendencia de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor. En cálculo (especialmente en análisis real y matemático) este concepto se utiliza para definir los conceptos fundamentales de convergencia, continuidad, derivación, integración, entre otros.
El concepto se puede generalizar a otros espacios topológicos, como pueden ser las redes topológicas; de la misma manera, es definido y utilizado en otras ramas de la matemática, como puede ser la teoría de categorías.
Para fórmulas, el límite se utiliza usualmente de forma abreviada mediante lim como en lim(an) = a o se representa mediante la flecha (→) como en ana.
Límite de una sucesión


La sucesión an = 2(4 − n) para converge al valor 0, como se puede ver en la ilustración.
La definición de límite matemático para el caso de una sucesión nos indica intuitivamente que los términos de la sucesión se aproximan arbitrariamente a un único número o punto L, si existe, para valores grandes de n. Esta definición es muy parecida a la definición del límite de una función cuando x tiende a .
Formalmente, se dice que la sucesión an tiende hasta su límite L, o que converge o es convergente (a L), y se denota como:
si y sólo si para todo valor real ε>0 se puede encontrar un número natural N tal que todos los términos de la sucesión, a partir de un cierto valor natural n mayor que N converjan a L cuando n crezca sin cota.
Escrito en un lenguaje formal, y de manera compacta:
Este límite, si existe, se puede demostrar que es único. Si los términos de la sucesión no convergen a ningún punto específico, entonces se dice que la sucesión es divergente.
Límite de una función

Visualización de los parámetros utilizados en la definición de límite.
En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de la función. Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.
Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:
si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.
Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:

"El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distancia entre la imagen de x y L es menor que ε unidades".

Esta definición, se puede escribir utilizando términos lógico-matemáticos y de manera compacta
Límite de una sucesión de conjuntos
En teoría de conjuntos también se utiliza el concepto de límite, que se puede calcular sobre una sucesión de conjuntos. Para ello, los conjuntos deben de cumplir una serie de condiciones, como puede ser la monotonía (creciente o decreciente). De manera más general, y utilizando la definición de límite superior y límite inferior para una sucesión de conjuntos cualquiera An, se dice que el límite de esta sucesión existe si el límite superior y límite inferior existen y son iguales,
Estos conceptos son muy útiles en disciplinas de las matemáticas como la teoría de la medida, especialmente en espacios de probabilidad.
Límites en redes topológicas
Todas las nociones anteriores de límite pueden ser unificadas y generalizadas a espacios topológicos arbitrarios mediante la introducción de redes topológicas y la definición de sus límites.
Sea (X,T) un espacio topológico y una red en X. Se dice que es un punto límite de la red si la red está eventualmente en cada entorno de x, es decir, si cualquiera que sea el entorno V de x (esto es, cualquiera que sea el conjunto V de forma que exista un abierto G tal que ) existe un de tal forma que para cada con d0d se cumple que .
Límites en teoría de categorías
En teoría de categorías, una rama de la matemática, se define el concepto abstracto de límite, el cual usa propiedades esenciales de construcciones universales tales como productos y límites inversos.